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More than half of the world’s population currently live in urban areas and are particularly at

risk from the combined effects of the urban heat island phenomenon and heat increases due

to climate change. Here, by using remotely sensed surface temperature data and social-

ecological indicators, focusing on the hot dry season, and applying the risk framework of the

Intergovernmental Panel on Climate Change, we assessed the current heat health risk in

139 Philippine cities, which account for about 40% of the country’s total population. The

cities at high or very high risk are found in Metro Manila, where levels of heat hazard and

exposure are high. The most vulnerable cities are, however, found mainly outside the national

capital region, where sensitivity is higher and capacity to cope and adapt is lower. Cities with

high levels of heat vulnerability and exposure must be prioritized for adaptation. Our results

will contribute to risk profiling in the Philippines and to the understanding of city-level heat

health risks in developing regions of the Asia-Pacific.
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By 2100, the likely range of global temperature increase
relative to 1861–1880 will be 2.0 to 4.9 °C, with a 5% chance
that it will be <2 °C1. In the much nearer future

(2030–2052), global warming is likely to reach 1.5 °C above pre-
industrial levels if it continues to increase at the current rate;
estimated anthropogenic global warming is currently increasing
at 0.2 °C per decade as a result of past and ongoing emissions2.
This is alarming, because, as temperatures increase, extreme heat
events such as heat waves and drought are also projected to
increase in frequency and severity3, endangering human lives4,
affecting ecosystems5, impacting crop yields and global food
production6, and wreaking havoc on infrastructure resulting in
economic losses7.

Against the backdrop of rapid urbanization, especially in
developing regions8, there is also growing concern about the risks
that heat poses to urban dwellers9,10. Generally, urban areas
experience higher surface temperatures than their surrounding
rural areas–a phenomenon called the urban heat island (UHI)
effect11,12. The global urban population–currently 55% of the
world’s total population8—is particularly at risk because heat
increases due to climate change, including heatwaves, and their
impacts on urban areas are amplified by the UHI effect13,14. The
challenge in ensuring the quality of urban environments and well-
being of urban residents is enormous, but even more so in the
years to come as the proportion of the global urban population is
expected to reach 68% by 20508.

The UHI phenomenon is one of the most important human-
induced changes to the climate of the Earth's surface15–17. Its
most important negative consequences include increased mor-
tality and morbidity, human discomfort, increased energy con-
sumption and greenhouse gas emissions, and impaired air and
water quality18,19. Increases in urban temperatures also cause heat
stress in people, harming their health and impairing their well-
being and productivity20. Thus, the UHI phenomenon not only
diminishes the quality of urban ecological environments, but also
affects the overall livability of urban areas and cities11,21.

Measures to mitigate the negative impacts of heat increases and
extreme heat events are needed. However, given the varying
physical and socioeconomic characteristics of urban areas and
cities, the effective reduction of heat-related impacts requires
localized adaptation10,22. Today, local-level heat risk assessments,
including assessments of human vulnerability and exposure to
heat, are at the core of this whole issue. In general, climate-related
risk assessments at the local level are performed so that a precise
characterization of who and what is at risk from which climate
hazard, and why, can be obtained. This is an important step
toward the revolution in understanding that is needed to help
achieve a climate-resilient society23. More particularly, this
knowledge generation can help make the risks that societies and
economies face visible and fully understood23—a crucial factor in
the identification of appropriate adaptation options, which is an
integral part of the adaptation planning process24,25.

The scientific literature on climate-related vulnerability shows
that the vulnerability assessment framework of the Intergovern-
mental Panel on Climate Change (IPCC) in its Third and Fourth
Assessment Reports (TAR and AR4, respectively)26,27 has been
widely used28. In this framework, the vulnerability of a system to
climatic stimuli is expressed as a function of its exposure, sensi-
tivity, and adaptive capacity26,27. However, in its Special Report
on Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation29 and its Fifth Assessment
Report (AR5)30, the IPCC turned its focus on to a risk-centered
assessment framework, in which risk is expressed as a function of
three components, namely hazard, exposure, and vulnerability. At
least at the component level, the IPCC’s revised framework is
consistent with the risk framework in the field of disaster risk

reduction and management31, which is also reflective of the
widely known Crichton risk triangle32.

Located in Southeast Asia, the Philippines is ranked third
worldwide in terms of disaster risk in the World Risk Index 2018,
a composite index that also includes risks from climate-related
hazards (www.WorldRiskReport.org). As of 2015, as many
as 40.5% of the country’s total population (100.98 million) were
city dwellers33. Today, heat health risk is considered one of the
key risks in the country, and thus adaptation to heat-related
health impacts is one of the nationʼs adaptation priorities34.
However, the literature on heat health risk and vulnerability
assessments in the country is still limited. Previous heat risk-
related studies in some cities and metropolitan regions of the
country have come from the field of public health35,36, but
they were not necessarily conceptualized according to the IPCC
AR5’s risk framework. Other studies have focused on perceived
heat stress in urban Philippines and how heat stress has affected
intentions to move as an adaptation strategy20,37.

Advances in remote sensing technology (e.g., remotely sensed
thermal data) have been helpful, not only in the study of the UHI
phenomenon12,21,38, but also in the assessment of heat health risk
and vulnerability39–45. Here, drawing upon the concept of risk as
a function of hazard, exposure, and vulnerability, and the latter as
a function of sensitivity and capacity30,46, we assessed the current
heat health risk in 139 (out of 145) Philippine cities during the
hot dry season by using remote sensing data and social-ecological
indicators. We also discuss the implications of our findings for
adaptation planning. With its scope and approach, to our
knowledge, our study is the first of its kind in the country.

The cities at high or very high risk are found in Metro Manila,
where levels of heat hazard and exposure are high. The most
vulnerable cities are, however, found mainly outside the national
capital region, where sensitivity is higher and capacity to cope and
adapt is lower. Cities with high levels of heat vulnerability and
exposure must be prioritized for adaptation. This study, in gen-
eral, should be useful in the context of community-level risk
profiling, which is an important climate risk management-related
strategy in the country47. The results will also contribute to the
understanding of city-level heat health risks in developing regions
of the Asia-Pacific.

Results
Minimum temperature thresholds for heat health risk. From
the remotely sensed land surface temperature (LST) data, coupled
with the mortality data (see Methods), we found a minimum
mortality temperature (MMT) threshold of 38.3 °C for daytime
(Fig. 1a) and 24.3 °C for nighttime (Fig. 1b). For both daytime
and nighttime, the relative risk (RR) curve showed an increasing
trend as temperature increased beyond the MMT. The trend of
the RR curve on the left side of the MMT for daytime was similar
to that for nighttime: both curves first increased as the tempera-
ture decreased below the MMT before individually approaching
the null RR (= 1) at a certain temperature (see Fig. 1). The
observed increasing trend in the RR curve at nighttime as tem-
perature increased beyond the MMT indicated that heat health
risk was apparent even at night, contrary to the popular public
view that risk is only present during the day owing to human
exposure to daytime temperatures. UHI effects are present not
only during the day, but also at night, as the heat accumulated in
the daytime is released during the night15,42. Therefore, con-
sidering the importance of both nighttime and daytime tem-
peratures in UHI studies and heat health risk assessments, we
used both nighttime and daytime temperatures to produce overall
heat hazard indexes for Philippine cities, taking into account the
derived MMT thresholds (see Methods).
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Heat hazard in Philippine cities. From the remotely sensed
daytime and nighttime LST data during the hot dry season of c.
2015 (March–May 2014–2016) (see Fig. 2 and Methods) and the
derived MMT thresholds for daytime and nighttime (Fig. 1), 11
(7.9%) of the 139 cities that were considered in the analysis
emerged as having very high heat hazard index values (Fig. 3a).
All these cities except one (Bacoor City, located south of Metro
Manila) are in Metro Manila. A total of 19 (13.7%) cities had
high heat hazard index values, four of which were in Metro
Manila and the rest were distributed mostly in Luzon. The other
cities fell into the moderate (26, 18.7%), low (30, 21.6%), or very
low (53, 38.1%) heat hazard index categories. Cebu City and
Davao City, which are regional centers in Visayas and Mindanao
(Fig. 2a), respectively, both fell into the very low category. Overall,
these results are evidence of the UHI phenomenon, in which the
cities with higher levels of heat hazard (high or very high) were
those found in the prime urban center of the country, Metro
Manila. These cities have greater proportions of built-up and
impervious surfaces and less vegetation and open spaces. The
whole of Metro Manila itself is also ranked high in the world in
terms of anthropogenic heat, which is also an important factor
influencing UHI effects48.

Heat exposure in Philippine cities. On the basis of population
density (see Methods), only one city had a very high heat expo-
sure index, and this was Manila City (Fig. 3b). In fact, as of 2015,
Manila City, with a population density of 42,628 people per
km2 33, was the most densely populated city, not only in the
country but also in the world. Two cities had high heat exposure
index values; these were Caloocan City and Mandaluyong City,
both of which are in Metro Manila. The six cities with moderate
heat exposure index values were also located in Metro Manila.
Together, these cities classified as having moderate, high, or very
high heat exposure index values accounted for 6.5% of the 139
cities. A large proportion of cities fell into the very low heat
exposure index category (121, 87.1%); only nine (6.5%) cities
were classified into the low index category. The least densely
populated city in the country is Puerto Princesa City in the
province of Palawan (Luzon), with 107 people per km2. The
regional centers in Visayas (Cebu City) and Mindanao (Davao
City) (Fig. 2a) have population densities of 3148 and 668 people
per km2, respectively. All three of these cities had very low heat
exposure index values.

Heat vulnerability in Philippine cities. Based on the average
results of the heat vulnerability assessments (see Methods), 18

(12.9%) cities had very high heat vulnerability index values; only
one of these (Malabon City) was in Metro Manila (Fig. 3c). Forty-
five (32.4%) cities had high heat vulnerability index values. Seven
of these cities are found in Metro Manila, whereas the rest are
distributed across the country. The vulnerability index values of
the cities depended on the relative weights of sensitivity and
capacity (Supplementary Tables 2 and 3) and on their respective
values for each of these two components of vulnerability (as
influenced by their respective indicators’ values and relative
weights). Capacity had an average weight of 0.56, whereas sen-
sitivity had 0.44 (Supplementary Table 2). The very high heat
vulnerability index of Malabon City was heavily influenced by its
very low capacity index value. Overall, however, the most vul-
nerable cities were found mainly outside Metro Manila and
were those with high sensitivity (with high poverty incidence and
proportions of young and old people) and low capacity to cope
and adapt (with low city and per capita net incomes and less
green space).

Heat health risk in Philippine cities. Of the 139 cities examined,
one emerged as having a very high heat health risk index (HHRI)
(0.81, with a 95% CI of 0.71–0.91): Manila City, the country’s
capital (Fig. 4 and Supplementary Table 4). Five (3.6%) cities had
high HHRI values, and they were also located in Metro Manila.
The HHRI values of the cities depended on the relative weights of
hazard, exposure, and vulnerability (Supplementary Tables 2 and
3) and on their respective index values in each of these three
components of risk (Fig. 3). On average, exposure had the highest
relative weight (0.45), followed by vulnerability (0.33) and hazard
(0.22) (Supplementary Table 2). The much higher relative weight
of exposure made Manila City—the top city in terms of heat
exposure index because of its very high population density
(Fig. 3b)—the top city in terms of heat health risk (Fig. 4 and
Supplementary Table 4). Twelve (8.6%) cities had moderate
HHRI values; nine of these were in Metro Manila and included
Makati City (the financial center of the country) and Quezon City
(the nation’s most populous city). Notably, all of the cities in
Metro Manila that were considered in the analysis were among
the top 20 cities in terms of HHRI (Fig. 4 and Supplementary
Table 4).

There were inconsistencies in the HHRI values of the cities
across the 12 assessment results (Fig. 4b and Supplementary
Table 4—95% CI; see Methods). These were the result of differences
in the expert relative weights that were used during the aggregation
process, for example, at the risk component level (hazard: mean=
0.22 and SD= 0.23; exposure: mean= 0.45 and SD= 0.22;
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vulnerability: mean= 0.33 and SD= 0.12) (Supplementary Table 2).
Heat health risk assessment is multi-disciplinary and hence cuts
across various fields, requiring a diversity of expertise. Therefore,
although the derived weights and the risk assessment results were
not consistent among experts, this result was not completely
unexpected because it reflects a diversity of views from a set of
experts in various, but related, fields. Nevertheless, the overall
HHRI was positively and significantly correlated with the number

of deaths attributable to heat (NDAH) (Pearson’s r= 0.436, p <
0.0005) (Supplementary Fig. 1; see Methods).

Discussion
In the context of adaptation planning, although risks cannot
be fully eliminated, adaptation measures should be able to reduce
vulnerability and exposure, and at the same time increase
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resilience29,30. Here, adaptation refers to “the process of adjust-
ment to actual or expected climate and its effects. In human
systems, adaptation seeks to moderate or avoid harm or exploit
beneficial opportunities. In some natural systems, human inter-
vention may facilitate adjustment to expected climate and its
effects” [p. 5]30. Not only do adaptation options need to be
location-specific, they also need to be hazard- or problem-
specific. Location-specific because a particular community may
have environmental and socioeconomic characteristics (including
cultural and political) that are not shared by other communities
in the region; thus an adaptation measure may not be general-
izable across geographical regions and societal space10,22. Hazard-
or problem-specific means that an adaptation measure should be
explicit and specific concerning who is going to adapt to which
climate-related hazards and impacts49,50. In the context of this
study, it is the city dwellers themselves who need to adapt to the
impact of heat so that their vulnerability, and the risks that heat
poses to their health and well-being, will be lessened.

Composite indexes, such as the derived risk index in this
study (Eq. (1); Fig. 4 and Supplementary Table 4), the world
risk index (www.WorldRiskReport.org), the environmental
performance index (https://epi.envirocenter.yale.edu/), and the
sustainable development goal (SDG) index (https://sdgindex.
org/), have the ability to capture the bigger picture, e.g., the
multidimensionality of complex systems, such as a social-
ecological system, and to provide summary statistics that can
communicate system status and trends to a wide range of
audiences51. Composite indexes are also “suitable tools when-
ever the primary information of an object is too complex to be
handled without aggregations” [p. 13]52. Nevertheless, the
components and indicators from which such composite indexes
are derived should be given more attention at the levels of
planning, policy formulation, and decision making51. For this
study, the nested hierarchical structure of the derived risk index
(Fig. 1c and Supplementary Table 1) enabled us to identify the

cities where heat hazard was more intense and those cities with
relatively more exposed and vulnerable populations (Fig. 3).

Indeed, the vulnerability of city dwellers to heat contributed
largely to the heat health risk levels of most of the cities examined,
especially those outside Metro Manila (Fig. 3c). Most of the cities
outside Metro Manila have lower socioeconomic status—an
important factor contributing to their vulnerability. In other
studies, it has also been concluded that rural areas may be more
vulnerable to heat than urban areas53. Our results indicate,
however, that cities in a metropolitan area can also be highly
vulnerable to heat (Fig. 3c)—a finding that has also been observed
by other scholars54. Metropolitan areas around the world—but
more especially in developing regions such as the Philippines—
also face various issues that influence their vulnerability, includ-
ing urban poverty, congestion, and poor health conditions,
among other social and environmental problems. In terms of the
IPCCʼs conceptual definition of vulnerability30, as implemented
in this study, there is a need for adaptation measures (e.g.,
development programs and policies that can reduce poverty
incidence) that can reduce the sensitivity of people in the cities
that were found to be more vulnerable to heat. Similarly, adap-
tation measures that can improve peopleʼs capacity to cope
with, and adapt to, heat are needed, such as development pro-
grams and policies that can elevate their socioeconomic status
and improve health care services.

More specifically, air-conditioning53,55,56 can help people
adapt to heat, but their economic capability will be an important
factor in this case because electricity costs in the Philippines are
among the highest in the world57. The Philippine national gov-
ernment, in general, needs to find means and institute measures
that will lower the countryʼs electricity costs to help its citizens to
be able to adapt to heat increases, especially those in urban areas
given the effects of the UHI phenomenon. That being said, the
widespread use of air-conditioning is also energy-intensive and
exacerbates emissions (if fossil fuel-based), leading to positive
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feedback loops. This problem should also be considered by the
government and by the country’s energy, manufacturing, com-
mercial, and household sectors.

Our findings also showed that, although vulnerability was an
important contributor to risk, it was not the cities with very high
levels of vulnerability (i.e., those located mostly outside of Metro
Manila; Fig. 3c) that topped the list in terms of heat health risk.
Instead, it was those highly densely populated cities in Metro
Manila (Fig. 3b) that occupied the upper bracket of the list (Fig. 4
and Supplementary Table 4). Therefore, where possible, the level
of exposure should also be lowered as part of the adaptation
strategy29,30. In the context of this study, this means that the
populations exposed to, and affected by, heat need to decrease—
especially those in the highly densely populated cities of Metro
Manila, like Manila City, Mandaluyong City, and Caloocan City
(Figs. 3b and 4). In fact, a recent study of perceived heat stress in
the urban Philippines showed that the level of heat stress
increased with population density20.

However, decongesting Metro Manila—although possible—will
not be an easy task. There is a need for a national-level policy
that could promote sustainable regional growth and development
so that people from the provinces will no longer flock to the
highly densely populated metropolitan area. If socioeconomic

opportunities in regional areas are improved, it would also
become possible for some of those currently living in the
metropolitan area to go back to their own provinces. In a recent
survey of human mobility intentions in response to heat in urban
Southeast Asia, including the urban Philippines, nearly a quarter
(23%) of respondents reported that they were very likely to move
away from their current locations because of heat stress, and 50%
responded that they probably would37. This movement of people
away from their current locations is an adaptation strategy37,
consistent with the characterization by the Global Commission
on Adaptation of the “reduce (and prevent) and prepare (and
respond)” elements of climate change adaptation23.

Similarly, heat hazard was also a major contributor to the heat
health risk levels of the cities examined, but especially those in
Metro Manila (Fig. 3a). The observed pattern of heat intensity—
i.e., the finding that the national urban center (Metro Manila) is
hotter than its surrounding urban areas and cities (Fig. 3a)—
provides evidence of the UHI phenomenon at a national scale.
Complementary to the adaptation options mentioned above for
reducing vulnerability and exposure to heat, measures that could
lower or mitigate the intensity of heat hazard should also be
considered. In this respect, various urban development-related
measures (e.g., use of high-albedo materials in building design,
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HHRI value90,91. In cases where the HHRI values are lower than the lower fence for outliers (Q1–1.5×IQR), the lower whisker (the end of the line that is on
the left side of the box) is the lowest HHRI value above the lower fence; otherwise, the lower whisker is equal to the lowest HHRI value90,91. The symbol “x”
on the boxplots represents the average of the 12 risk assessment results, considered here as the overall HHRI of each city; these values were the ones used
to produce the map (a). The HHRI distributions were mostly skewed, with an apparent positive skew for Manila City. The “P.” in “21 San Carlos City P.”
refers to the province of Pangasinan. Summary results for all the cities are presented in Supplementary Table 4. See Methods for details.
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use of cool materials for roof, street, and pavement covers and
implementation of urban greening strategies) are among the
current research foci in this field58,59.

In fact, urban greening alone—improvement of the provision,
quality, and accessibility of urban green spaces—has been an
important issue in the fields of environmental health, urban
quality of life, urban ecology, and ecosystem-based adaptation in
cities60–62. This is because urban green spaces provide valuable
ecosystem services, including the regulation of micro-climates
and urban temperatures and the purification of air63,64. There-
fore, should there be a plan for gentrification and urban renewal
in the near future in any of the cities examined, the concept of
urban greening should form part of their respective development
plans. One local example is the Bonifacio Global City (https://bgc.
com.ph/) located in Taguig City, Metro Manila, where there have
been efforts to take urban green space into account in urban
planning and development.

Our overall findings on heat health risk show that cities located
in the national capital region (Metro Manila) are more at risk
from heat than cities outside of the country’s prime urban center.
Other studies have also found that heat health risk is generally
higher in urban areas than in rural areas41,43,53,54. Although the
correlation between the derived HHRI and the NDAH was not
very high (r= 0.436), the relationship was statistically significant
(p < 0.0005) (Supplementary Fig. 1). Some factors that could have
influenced this level of correlation include the coarseness of the
mortality data used (province level, instead of city level), the
temporal inconsistency between the mortality data (c. 2010) and
the HHRI (c. 2015), cloud contamination of the remote sensing
data, which affected the level of completeness of the datasets used,
and the omission of other potentially relevant vulnerability
indicators owing to data limitation (more on this below).
Nevertheless, the validation results are indicative of the usefulness
and potential of the risk assessment approach employed, as well
as of the indicators used. Empirically, our results are important
and should be useful in the context of community-level risk
profiling, which is much needed to support adaptation planning
in the country, considering that adaptation to heat-related health
impacts is one of the national adaptation priorities34,47.

Methodologically, our study attempted to introduce some
advances in the field of risk assessment. For instance, it attempted
to operationalize the latest climate-related impact assessment
framework by the IPCC in its AR5 (i.e., the risk framework)
(Fig. 2c). In AR5, exposure refers to the presence of specific
exposed elements or elements at risk (e.g., people, infrastructure,
and ecosystems)30, whereas exposure in the TAR/AR4 is a
hazard-centered concept, as also reflected in various empirical
studies45,65. Consequently, under the TAR/AR4 framing, where
exposure is a component of vulnerability, vulnerability assess-
ments suffer from uncertainties that are derived not only from the
various social-ecological input data but also from the estimations
or projections of climate-related hazards50. However, with the re-
definition of exposure and its separation from vulnerability in the
AR5’s risk framework (Fig. 2c), vulnerability assessments no
longer suffer from the same uncertainties, thereby narrowing the
scope for maladaptation50. Some adaptation-related strategies
such as green spaces60,61 under the concept of ecosystem-based
adaptation66 also function as mitigation strategies by, for exam-
ple, serving as carbon sinks. In this way, they can also help to
mitigate hazard in the context of the AR5 risk framework and
exposure in the context of the TAR/AR4 vulnerability framework.

In addition, this study has attempted to integrate some public
and environmental health concepts (e.g., the concepts of RR
and MMT) into the indicator-based assessment of heat health
risk39–43,53,54. Such integration was vital to our study, because the
derived RR curves and MMT thresholds provided the needed

critical values (temperatures) for heat hazard index determina-
tion. Other studies have considered critical temperatures based
on the definition of hot days or nights or heat waves53,54. To
our knowledge, our study is the first to integrate the concepts of
RR and MMT into an indicator-based risk assessment approach,
coupled with the use of remote sensing technology. The
improvement in the availability and accessibility of remotely
sensed thermal data has been an important technological
advancement, providing alternative data for heat health risk- and
vulnerability-related studies in urban areas and cities, especially in
the developing regions, where data on air temperature are scarce.
Remotely sensed thermal data have an important advantage,
because they have a wide, contiguous spatial coverage, unlike in
the case of in situ temperature data from weather stations11,67.

Our approach also employed relative weights based on expert
judgements28,68,69, which can be either further refined in future
on the basis of new knowledge on heat-related risk issues, or
modified according to specific user requirements40. In index
development involving the aggregation of various indicators,
there can be a diversity of views concerning the appropriate
weights and the methods used to determine them68,69. In this
study, there were differences among expert judgements regarding
the relative weights of the risk components and the components
of vulnerability and their respective indicators, reflecting diversity
of views (Supplementary Tables 2 and 3). As heat health risk
assessment is multi-disciplinary, we attempted to capture this
diversity of views by considering all the 12 assessment results in
the derivation of the overall HHRI values of the cities (Fig. 4 and
Supplementary Table 4; see Methods).

Our heat risk assessment approach (Fig. 2c; see Methods)
also had several limitations, and these could have been a source
of uncertainties in the results. In general, these limitations
relate to the unavailability of detailed data (e.g., city-level data
on heat-related mortality or hospital visits during the hot dry
season, c. 2015). Similarly, detailed data are needed for other
potentially relevant indicators for heat vulnerability assessment:
sensitivity (e.g., data on pre-existing health conditions55,56) and
capacity (e.g., data on the proportion of budgets allotted to
healthcare services and environmental protection; air-
conditioner use53,55,56; and education or literacy rates53,55,56).
Air-conditioner use and literacy rates in the Philippines are
largely dependent on the socioeconomic status of each family or
individual. Therefore, in light of this local knowledge, per capita
net income has been used as a proxy indicator for these vari-
ables. Nevertheless, all of these indicators mentioned, including
those that are deemed relevant but have not been mentioned,
need to be explored and, where possible, included in future
updates of this study once the needed data at a city level become
available.

Furthermore, remotely sensed thermal data support spatially
explicit heat-related risk assessments at the pixel or grid
level41,43,53. However, this study could not take full advantage of
this potential of the remote sensing data that were used, owing to
the lack of spatially explicit data for most of the vulnerability
indicators (Supplementary Table 1)—a limitation that has been
pointed out by other scholars42. The dynamics of the components
of risk were also not considered in this study. For risk-reduction
and adaptation strategies to be effective, the dynamics and
interconnections of the risk components and their factors and
indicators need to be considered70. In this respect, the climate
impact chain concept—a general representation of how a given
climate stimulus propagates through a system of interest via the
direct and indirect impacts it entails71,72—as well as the intro-
duction of different development trends, pathways, and scenar-
ios (including future climate scenarios)73, needs to be explored in
the future.
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In summary, the above discussion focuses on the potential
adaptation measures that could directly address the heat exposure
and vulnerability factors and indicators used in the assessment of
heat health risk in Philippine cities: measures to lower heat
exposure levels (regional development as a strategy to decongest
Metropolitan cities) and measures to lower heat vulnerability
levels (poverty reduction, socioeconomic status improvement,
enhancement of healthcare services, urban greening, and lowering
of electricity costs to enable wide use of air-conditioning, taking
into account potential emissions). There could be other potential
adaptation options, but all of the above-mentioned options can be
considered in landscape and urban development planning for
Philippine cities to decrease their levels of heat health risk. These
measures, if implemented, could also help pave the way for the
cities to become climate-resilient and steer their respective urban
development toward sustainability, consistent with the SDGs
(e.g., SDG 11—Sustainable Cities and Communities) (https://
sustainabledevelopment.un.org/sdgs). In general, our approach is
flexible and can be applied in other countries and case study
areas, taking into account the caveats and limitations discussed
above. Finally, we recognize that, to help advance scientific
knowledge and improve understanding in the field of heat health
risk, there is still a need for more local-level assessments in
developing regions, which are at the forefront of the threat of the
combined effects of the UHI phenomenon because of rapid,
poorly planned, and spontaneous urbanization and heat increases
due to climate change. This study aims to help fill and narrow
these critical gaps in knowledge.

Methods
Study area. The Philippines is a tropical, archipelagic country located in Southeast
Asia (Fig. 2a). With a population of 100.98 million in 201533, it is the second most
populous country in the region, next to Indonesia. Its >7000 islands are grouped
into three: Luzon (north), Visayas (middle), and Mindanao (south). As of 2015, the
country had a total of 145 cities, of which 73 (50.3%) are in Luzon, 39 (26.9%) in
Visayas, and 33 (22.8%) in Mindanao (Fig. 2a). Metro Manila, the country’s
national capital region, is located in Luzon and is composed of 16 cities and one
municipality. According to the 2015 census33, the two most populous cities in the
country are in Metro Manila: Quezon City (2.94 million), the country’s former
capital74, and Manila City (1.78 million), the current capital.

Although the climate of the Philippines is classified into four types according to
rainfall distribution (http://bagong.pagasa.dost.gov.ph/), it is generally
characterized by two pronounced seasons according to the amount of rainfall: a
rainy season during June–November and a dry season during December–May
(Fig. 2b). Based on temperature, it is also classified into two seasons: a cool season
during December–February and a hot season during March–November. The dry
season can be subdivided further into a cool dry season (December–February) and
a hot dry season (March–May). We focused on the hot dry season (Fig. 2b). Of the
145 cities, 139 had complete datasets and were thus considered in this study (see
Supplementary Table 4).

Heat health risk assessment. Our study builds upon other previous related
studies that have employed remote sensing and social-ecological data39–43. Our
heat health risk assessment approach (Fig. 2c and Supplementary Table 1)
implemented the IPCCʼs conceptual framework on risk in its AR5 in which risk is a
function of hazard, exposure, and vulnerability30. Hazard refers to “the potential
occurrence of a natural or human-induced physical event or trend or physical
impact that may cause loss of life, injury, or other health impacts, as well as damage
and loss to property, infrastructure, livelihoods, service provision, ecosystems, and
environmental resources” [p. 5]30. Exposure refers to “the presence of people,
livelihoods, species or ecosystems, environmental functions, services, and resour-
ces, infrastructure, or economic, social, or cultural assets in places and settings that
could be adversely affected” [p. 5]30. Vulnerability refers to “the propensity or
predisposition to be adversely affected [and] encompasses a variety of concepts and
elements, including sensitivity or susceptibility to harm and lack of capacity to cope
and adapt” [p. 5]30.

Overall, our assessment of heat health risk started with the determination of the
MMT values for nighttime and daytime during the hot dry season (March–May).
These values were then used as thresholds in preparing a heat hazard layer based
on remotely sensed thermal data (see below). This was followed by the derivation
of exposure and vulnerability layers, and the final aggregation of risk components
to produce a heat health risk index for Philippine cities. The overall HHRI values of

the cities were derived by taking the averages of the 12 risk assessment results (see
below); this was followed by a validation and sensitivity analysis.

More specifically, our approach is based upon the principles of an indicator-
based assessment technique that is used to derive a composite index28,68,69. It
included the identification of factors and indicators for the three risk components
(hazard, exposure, and vulnerability); this identification was aided by a literature
review and expert consultations. The final list of factors and indicators
(Supplementary Table 1) was, however, affected by data availability. The three
components of risk, as well as the two components of vulnerability (sensitivity and
capacity), and their respective indicators, were aggregated by using relative weights
(Fig. 2c and Supplementary Tables 2 and 3).

The relative weights were determined based on an analytic hierarchy process
pairwise comparison75 survey questionnaire administered to a number of experts
(academics and researchers). In total, 26 experts were consulted (24
questionnaires were received in response; 12 of these were screened out)
(Supplementary Tables 2 and 3); this number is within the range considered in
other, related studies76–78. The concept of aggregating components and indicators
and using relative weights was consistent with the IPCC’s statement regarding the
derivation of vulnerability indexes, namely, “a climate vulnerability index is
typically derived by combining, with or without weighting, several indicators
assumed to represent vulnerability” [p. 1775]46.

Before aggregation, the indicators’ data values were first normalized to a
common 0 to 1 value range to make them comparable to each other and enable
aggregation at the indicator and component levels. Here, we used the min–max
normalization method54,68,72,79,80, a technique that performs a linear
transformation of the original data. All the indicators used fell under either an
interval or ratio scale of measurement (Supplementary Table 1); therefore, the same
normalization method was applied to all indicators.

The risk index (RI) of city i was calculated on the basis of the derived indexes of
the three components of risk (see below), by using a weighted arithmetic (additive)
aggregation procedure (Eq. (1))68,72.

RIi ¼
Xn

j¼1

xijwj; ð1Þ

where xij is the value of city i for index j, wj is the relative weight of index j, and n is
the number of indexes. Here, n= 3, referring to the three components of risk. The
relative weights of the three components sum to 1 (Supplementary Table 2).

With the use of 12 sets of relative weights derived from the 12 experts’
questionnaire responses (Supplementary Tables 2 and 3), the whole process
produced 12 risk assessment results. The overall HHRI values of the cities were
derived by taking the average of these 12 risk assessment results 1

12

P
RI

� �
. The

HHRI values were later categorized into a five-level qualitative scale: very high
(0.80 to 1.00), high (0.60 to 0.80), moderate (0.40 to 0.60), low (0.20 to 0.40), and
very low (0.00 to 0.20). The upper limit of each category level was inclusive.

Minimum temperature thresholds for heat health risk. Before proceeding with
derivation of the heat hazard index, we first determined the RR curves and the
MMT thresholds for daytime and nighttime (Eq. (2)). In temperature–health
studies81, RR is defined as the probability of a person dying when exposed to non-
optimum temperature as a ratio of the probability of a person dying when exposed
to optimum temperature (i.e., the MMT). The MMT is defined as the temperature
at which the probability of dying is lowest.

Yt;c � Quasipoisson

E log Yt;c

� �� �
¼ αþ cbTempt;c;v þ

PJ

i¼j
βjcovj þ nsðRHave; 4Þ

ð2Þ

The daily mortality ðYt;cÞ of province c is assumed to follow a Poisson
distribution considering overdispersion; hence the quasipoisson. The expected log
of the daily mortality in each province ðEðlogðYt;cÞÞÞ was regressed with the
intercept (α), a crossbasis term (cbTempt,c,v) to account for the bi-dimensional
aspects (lag and exposure) of temperature (for either minimum or maximum;
Tempv), a linear adjustment for the covariates ðPJ

i¼j βjcovjÞ of secular trends, day
of the week, and holidays, and a non-linear adjustment of relative humidity
ðnsðRHave; 4ÞÞ with 4 degrees of freedom (df). The crossbasis term was
parameterized by using a natural cubic spline with 4 df in the exposure dimension,
an intercept with three internal knots equally spaced in the log scale of the lag
dimension, and a lag period of 14 days35,82,83. A sensitivity analysis of the number
of lag days is given in Supplementary Fig. 2. Beta estimates extracted from
cbTempt,c,v were used to derive the RR, which was determined by taking the
exponential of the beta values. The RR was based on the 99th percentile of the
temperature data.

The relationship between remotely sensed LST and measured air temperature is
complicated, and it is often explored by using techniques such as statistical
regression, solar zenith angle models, or thermodynamics39,84,85. However, in the
UHI context in which this study is framed, “it is reasonable to believe that spatial
trends will be similar when comparing LST and air temperature” [p. 4]39, and
hence remotely sensed surface temperatures are a useful dataset, as has been shown
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in previous studies of heat health risk and vulnerability39–45. Therefore, in drawing
upon these previous studies and in response to a lack of the measured air
temperature data needed to support a nationwide city-level analysis, we used a
remotely sensed LST dataset to derive the RR curves and MMT thresholds.

More specifically, we used the March–May 2006–2011 LST data from the
moderate resolution imaging spectroradiometer (MODIS) product distributed as
MOD11A1.006 by NASA (the National Aeronautics and Space Administration)86.
The 2006–2011 period was chosen on the basis of temporal consistency with the
available mortality data, which were acquired from the Philippine Statistics
Authority. The mortality data were at the province level (32 provinces) and
included daily all-cause mortality records from 2006 to 2011. To be consistent, we
only used the mortality data for the hot dry season (March–May).

The daily Level 3 LST product has a spatial resolution of 0.93 km, projected to a
sinusoidal projection. The scientific datasets found in each daily data file (.hdf)
included, among other data layers, a daytime LST raster layer (c. 10:30 local solar
time) and a nighttime LST raster layer (c. 22:30 local solar time)86,87. We extracted
the LST raster layers from each daily .hdf file, yielding in a total of 4416 raster
layers (552 for daytime plus 552 for nighttime, multiplied by 4, which is the
number of scenes that could cover the country). The LST raster layers contained
valid values expressed in degrees kelvin ranging from 7500 to 65,535 at a scale
factor of 0.02 and a fill value of 0 for pixels that had no data87. As part of the
geoprocessing procedure, we first stacked all the LST raster layers for each scene.
This was followed by a mosaicking procedure that resulted into two mosaics
of stacked layers– one for daytime and one for nighttime. We then extracted
each mosaicked LST raster layer before converting the LST values to degrees
Celsius (°C).

Finally, by using a geoprocessing technique called zonal statistics–a tool in
ArcMap that calculates statistics on values of a raster within the zones of another
dataset–we determined the maximum daily daytime and nighttime LSTs in each of
the provinces with mortality data, considering all the pixels covered by each
province. The derived maximum daily daytime and nighttime LSTs over the 552-
day period for the 32 provinces with mortality data were used as input variables to
Eq. (2). Supplementary Fig. 3 is a flow diagram of the main steps implemented in
the processing of the MODIS LST data to derive the RR curves and MMT
thresholds. There were days on which the pixels covered by a province had no data
owing to the presence of clouds; this resulted in some provinces having no data for
maximum LST on some days (see also Supplementary Fig. 4). We filled in the
missing maximum LST values for those days in such provinces by employing a
multivariate imputation with the use of chained equations, implemented in the R
programming statistical package called mice88.

Deriving a heat hazard index. By drawing upon previous studies39–43, we also
used remotely sensed LST as a proxy indicator for heat. As in the above-descri-
bed derivation of the RR curves and MMT thresholds, we also used MODIS LST
data (MOD11A1.006) to derive the heat hazard index. We focused on the current
(c. 2015) heat health risk in Philippine cities during the hot dry season (Fig. 2b).
The average maximum temperature for the whole hot dry season (March–May) is
generally higher than for the whole hot rainy season (June-August) (Supplemen-
tary Fig. 5). Furthermore, although there could still be a heat health risk during the
hot rainy season, our province-level analysis using available air temperature
data revealed that the relative risk from heat was higher during the hot dry season
(Supplementary Fig. 6). During the rainy season, the degree of cloud contamina-
tion of remotely sensed LST data is also higher, posing challenges to inter-seasonal
analysis. In a separate study in Zhejiang Province, China, 3-month study periods
were also used53. Nevertheless, while we focused only on the hot dry season, we
added two more years to the March–May 2015 dataset (i.e., March–May 2014 and
March–May 2016) to capture the natural inter-annual variation in LST (Fig. 2b).
We used the period 2014–2016 so that the resulting heat hazard layer from the LST
data would remain temporally consistent with the social-ecological datasets used
for the exposure and vulnerability layers (c. 2015) (Fig. 2 and Supplementary
Table 1).

We extracted the LST raster layers from each daily .hdf file; this resulted in a
total of 2208 raster layers (276 for daytime plus 276 for nighttime, multiplied by
4 scenes). There were also pixels that did not have valid values on some days
because of cloud cover (i.e., no data) (see Supplementary Fig. 7). This hindered us
in using the number of days with temperatures higher than the MMT thresholds as
the basis for deriving the heat hazard index. As an alternative, scene by scene, we
determined the maximum LST of each pixel over the 276-day period, excluding the
pixels that had no data. This resulted in eight final scenes: four for daytime and
four for nighttime. We mosaicked the four scenes for daytime and the four scenes
for nighttime to produce two composite LST maps for the whole country: one for
daytime and one for nighttime (Fig. 2b and Supplementary Fig. 8). We then
converted the LST values to °C.

Before the two LST maps were normalized into a 0 to 1 index-value range, the
pixels that were within the boundaries of the cities were first extracted. In the
normalization process, we used the derived MMT values as thresholds for daytime
(38.3 °C) and nighttime (24.3 °C) (Fig. 1), meaning that pixels with LST ≤MMT for
daytime and ≤MMT for nighttime would have the lowest heat hazard index value,
i.e., 0 in the normalized value range of 0 to 1. The heat hazard index increased from
0 to 1 as the LST of the pixels increased from the MMT threshold to the highest

LST. After normalization, the heat hazard index maps (daytime and nighttime)
were averaged. The overall heat hazard index of each city was determined from this
averaged heat hazard index map by taking the mean of the index values of the
pixels inside each city. Finally, the resulting heat hazard index values of the cities
were normalized to a 0 to 1 index-value range and categorized into a five-level
qualitative scale, as for HHRI. Supplementary Fig. 8 is a flow diagram of the main
steps implemented in processing the MODIS LST data to derive the heat
hazard index.

Deriving a heat exposure index. By drawing upon the IPCC's concept of expo-
sure30, as explained above, we defined exposure in the context of this study as an
index referring to the presence of people that could be adversely affected by heat. In
this regard, we used population density as an indicator of heat exposure (Sup-
plementary Table 1). This indicator has been used in other heat health risk and
vulnerability studies39,40,42,44. To be consistent with the way the heat hazard index
was produced, we first derived a spatially explicit heat exposure index before
determining the overall heat exposure index of each city.

In the absence of spatially explicit population distributions, previous studies have
opted to use a proxy index, called the elevation-adjusted human settlement index,
which can be produced by using a set of remotely sensed data, including a nighttime
lights dataset, a vegetation index, and a digital elevation model41,43,53. Fortunately,
the downscaling of population data has progressed over the past years. Global
gridded population data are now available at various spatial resolutions and time
points. For instance, the gridded population data products of WorldPop for several
corresponding years have a spatial resolution of 100m (www.worldpop.org)89. We
took advantage of the availability of this dataset and used the spatially explicit 2015
population density map of the Philippines. The scatter plot between total city
population based on this dataset and total city population based on the 2015 census
had a very strong (nearly 1:1) positive correlation (R2= 0.9926) (Supplementary
Fig. 9).

As in the case of the heat hazard index, we first extracted the pixels of the
population density map that were within the city boundaries. We then normalized
the extracted pixels containing population density values to the same 0 to 1 index-
value range. We assumed that the heat exposure index value increased from 0 to 1
as the population density increased from the lowest to the highest value. The
overall heat exposure index of each city was derived by taking the average of the
index values of the pixels inside each city. Finally, the overall heat exposure index
values of the cities were also normalized to a 0 to 1 index-value range and
categorized into the same five-level qualitative scale as described above.

Deriving a heat vulnerability index. In the IPCC AR5, vulnerability is a function
of sensitivity and capacity30,72 (Fig. 2c). Considering data availability, the final
factors for sensitivity included age structure (as indicated by the proportion of
the young population (<15 years) and the proportion of the old population (≥65
years)), and socioeconomic status (as indicated by poverty incidence) (Supple-
mentary Table 1). For capacity, the final factors were natural resource (as indicated
by green space) and socioeconomic resource (as indicated by city net income and
per capita net income) (Supplementary Table 1). With the exception of green
space, which was indicated by a vegetation index called the enhanced vegetation
index (EVI), captured at 16-day interval (MOD13Q1) (Supplementary Table 1), all
of these indicators were at the city level and were non-spatial.

For the indicator green space, the index value of each city was derived by first
calculating the average EVI of each pixel over the hot dry season (March–May
2015). This was followed by a mosaicking process for the four scenes that covered
the whole country and that contained pixels with average EVI values. The same
zonal statistics tool, as described above, was used to derive the mean EVI of each
city. We normalized all the indicators to the same 0 to 1 index-value range,
considering the following assumptions. First, the higher the proportions of young
and old population and the higher the incidence of poverty, the more sensitive the
city population is to heat. Second, the higher the mean EVI, the city net income,
and the per capita net income, the higher the capacity of the city population is to
cope and adapt to heat.

Subsequently, the indicators were aggregated in accordance with the logic of Eq.
(1) to produce a sensitivity index and a capacity index. The same aggregation
technique was used to produce a heat vulnerability index, composed of these two
indexes. Before aggregation, however, the capacity index was first inverted because
of its inverse relationship with vulnerability. The 12 sets of relative weights
(Supplementary Table 2) were used during aggregation of the indicators and the
two vulnerability components. Finally, the vulnerability index values of the cities
from each of the 12 heat vulnerability assessment results were also normalized to a
0 to 1 index-value range.

Validation and sensitivity analysis. Plotting the derived HHRI values of the cities
against an observed heat health-related impacts (e.g., recorded heat-related mor-
tality53 or summer hospital visits43) can provide a direct validation of the risk
assessment results. Here, because of a lack of data at the city level for the year c.
2015, we used the available province-level all-cause mortality data for the hot dry
season of 2009–2011. The 32 provinces with all-cause mortality data (Supple-
mentary Fig. 4a) altogether covered 65 cities. To estimate all-cause mortality at the
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city level, we calculated the ratio of a city’s population (2010) to the total popu-
lation of the province (2010) in which it was located. This ratio was used to
estimate the city’s share of all-cause mortality (M) from the province’s average all-
cause mortality during the period. By using Eqs. (3) and (4), we estimated the city-
level NDAH, expressed as a density at city level (km−2). The use of density at city
level is consistent with the heat exposure index, which was produced by using
population density (see above). Finally, a scatter plot was produced and the cor-
relation (Pearson’s r) between HHRI and NDAH was calculated (see Supplemen-
tary Fig. 1).

NDAHcityðkm�2Þ ¼ x=A ð3Þ

x ¼ ðRR � 1Þ=RRð Þ´M ð4Þ
where x is the number of deaths attributable to heat at city level, ðRR � 1Þ=RRð Þ

is the attributable fraction, interpreted as the excess risk due to heat, M is the city’s
share of all-cause mortality from the province’s all-cause mortality, and A refers to
the city’s land area. Here, for x, the average between day and night was used to
make the validation consistent with the way in which the heat hazard index was
produced, which was also based on the average between the day and night heat
hazard indexes (see above). The relative risk (RR) was derived on the basis of
Eq. (2).

Additionally, we calculated the 95% confidence intervals (CIs) of the derived
HHRI values of all of the cities (Supplementary Table 4). We also performed a
sensitivity analysis for the number of lag days in deriving the RR curves and MMT
thresholds (Supplementary Fig. 2). A comparative analysis between RR in the hot
dry season and RR in the hot rainy season was also performed (Supplementary
Fig. 6). Finally, the spatiotemporal completeness of the MODIS LST data used was
also determined (Supplementary Figs. 4 and 7).

Implementation. Production of the RR curves and derivation of the MMT
thresholds and the number of deaths attributable to heat (x), as well as calculation
of the 95% CI, were accomplished by using the statistical program, R version 3.5.3.
Extraction of raster LST layers from the MODIS .hdf files and the subsequent
processing of the extracted data, including all the mapping activities, were per-
formed in ArcMap 10.5. All other statistical analyses were performed by using
Microsoft Office 365 ProPlus Excel Version 1902.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sources of all the data used are acknowledged in the Methods and Supplementary
Information sections. Complete lists of the cities, with their derived HHRI values, and the
12 sets of relative weights used, are given in the Supplementary Information.

Code availability
The R scripts and ArcMap models developed and used in this study are available from
the corresponding author upon request.
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