

Surveillance for Future Threats

Prince Mahidol Award Conference 2021 Preventing, Detecting, Responding to and Recovering from Future Threats (WS304) Christine Kreuder Johnson Epicenter for Disease Dynamics One Health Institute School of Veterinary Medicine University of California, Davis

LEANING INTO THE PANDEMICERA

Emergence of Pandemic Threats

Evolution of mutation-prone RNA viruses in wildlife hosts

Transmission between animal species

Majority of newly emerged infectious disease have wildlife origins

Human Coronaviruses

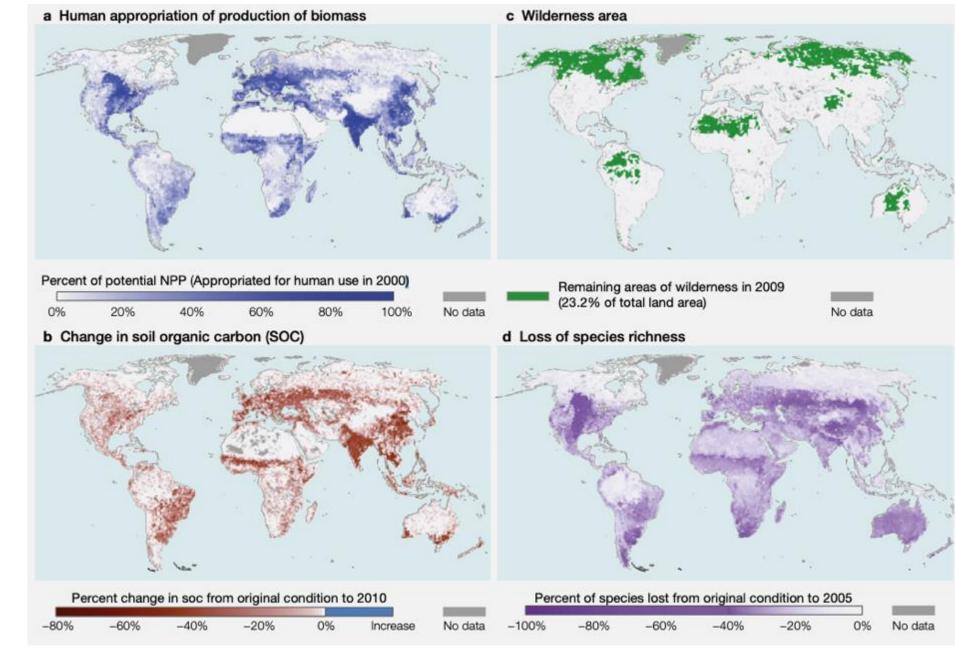
Virus – date of first discovery, most common disease manifestation, suspected source(s)

229E – 1968, causes mild disease 1. OC43 – 1967, causes mild disease 2. SARS-CoV – 2002, causes severe respiratory disease ς. NL63 – 2004, causes mild disease, occasionally croup 4. HKU1 – 2005, causes mild disease 5. 6. MERS-CoV – 2012, causes severe disease SARS-CoV-2 – 2019, causes severe disease (COVID-19) 7.

Emergence of a Pandemic Threat

Accelerated Global Change

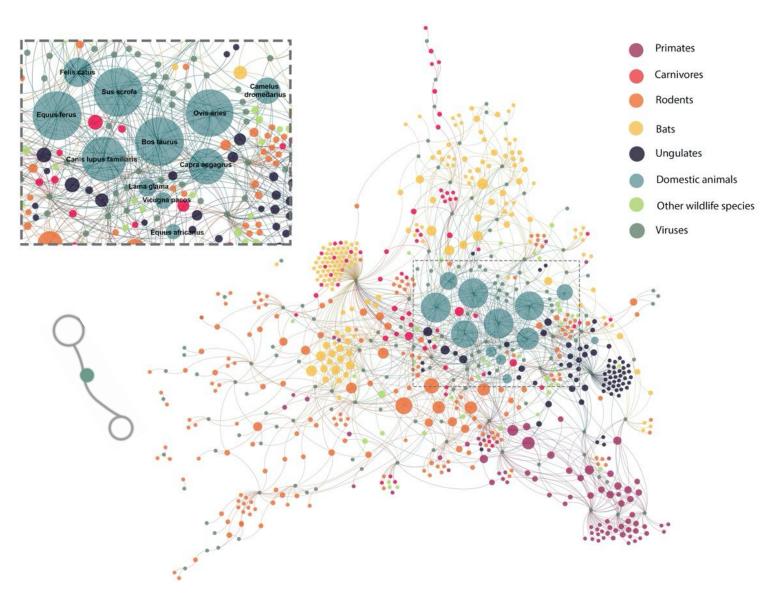
- Agricultural development, industrialization, urbanization
- Globalization and movement at the international scale
- Substantial net gains in human well-being and economic development
- Degradation of ecosystem services
 - Increased nonlinear or abrupt changes in ecological processes
 - Diminished regulatory processes
 - Increasingly frequent emerging infectious diseases


Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Synthesis. Island Press, Washington, DC.

Assessment Report on Land Degradation and Restoration (2018)

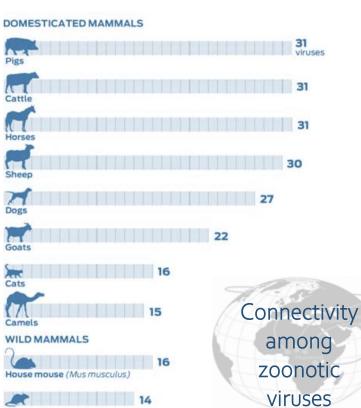
Human activity has drastically changed the planet

Cultivated systems cover over 1/3rd of earth's surface


Less than ¼ of land surface considered "wilderness" (ecological and evolutionary processes operating with minimal human disturbance)

IPBES (2018): Summary for policymakers of the assessment report on land degradation and restoration of the Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services. R. Scholes,
L. Montanarella, A. Brainich, N. Barger, B. ten Brink, M. Cantele, B. Erasmus, J. Fisher, T. Gardner, T. G. Holland, F. Kohler, J. S. Kotiaho, G. Von Maltitz, G. Nangendo, R. Pandit, J. Parrotta, M. D. Potts, S.
Prince, M. Sankaran and L. Willemen (eds.). IPBES secretariat, Bonn, Germany. 44 pages

Amplification in Livestock Production

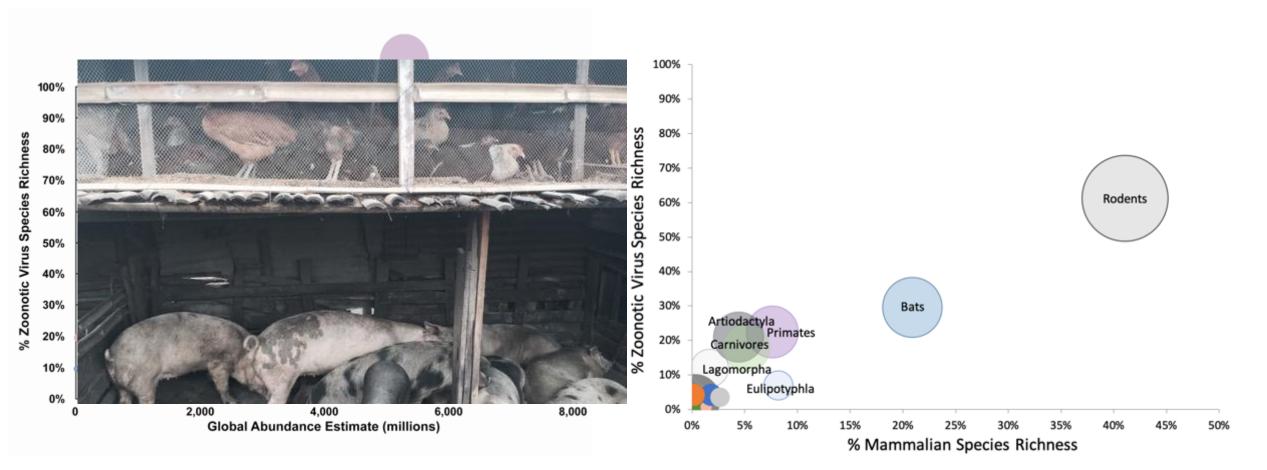


Global shifts in mammalian population trends reveal key predictors of virus spillover risk

Christine K. Johnson¹, Peta L. Hitchens², Pranav S. Pandit¹, Julie Rushmore¹, Tierra Smiley Evans¹, Cristin C. W. Young¹ and Megan M. Doyle¹

³EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA

Species with Most Zoonotic Viruses


Black rat (Rattus rattus)

Zoonotic Viruses found in Mammalian Species

Global shifts in mammalian population trends reveal key predictors of virus spillover risk

Christine K. Johnson¹, Peta L. Hitchens², Pranav S. Pandit¹, Julie Rushmore¹, Tierra Smiley Evans¹, Cristin C. W. Young¹ and Megan M. Doyle¹

¹EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA

by species for domesticated animals and humans

by taxonomic order for wildlife

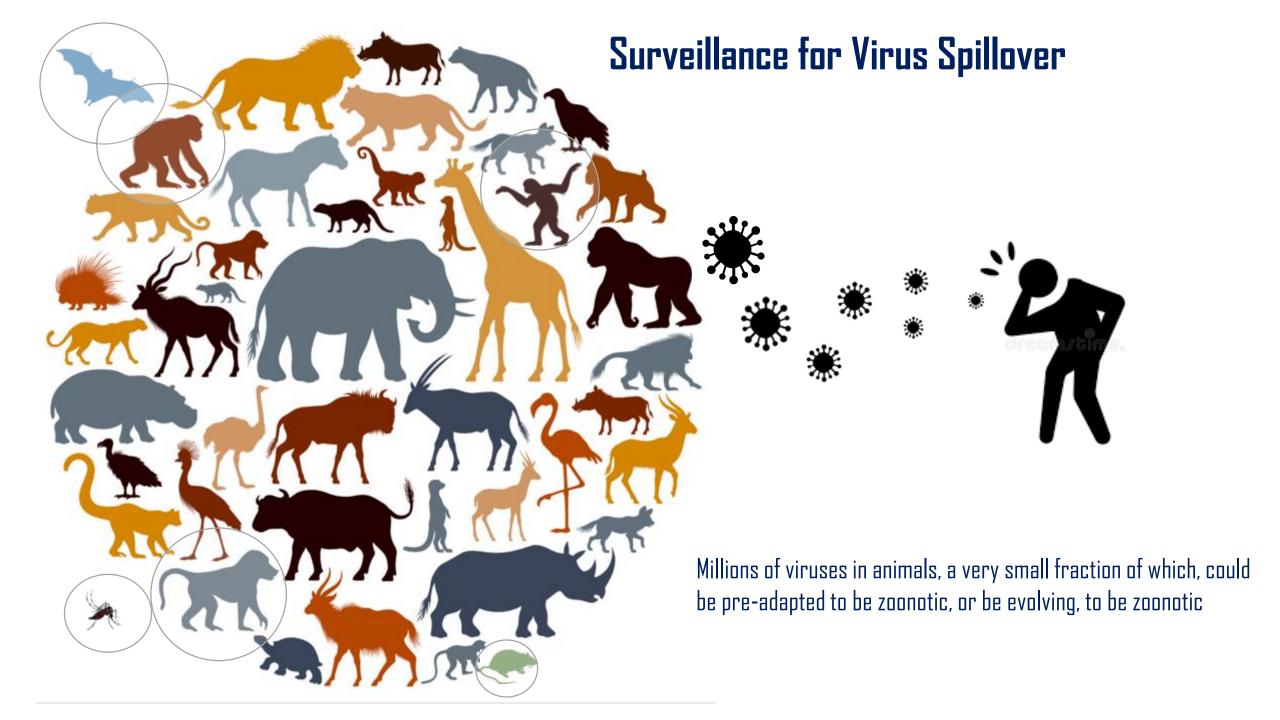
Informing Surveillance for Virus Spillover

variables	IRRb ^b	95% confidence interval	<i>p</i> -value
number of pubmed publications by species (log)	1.281	(1.26, 1.30)	<0.001
conservation status ^c			
least concern increasing	1.528	(1.19, 1.95)	0.001
least concern decreasing	0.750	(0.60, 0.94)	0.011
near threatened decreasing	0.347	(0.23, 0.52)	<0.001
vulnerable threatened status	0.169	(0.09, 0.30)	<0.001
endangered threatened status	0.138	(0.07, 0.25)	<0.001
critically endangered threatened status	0.076	(0.03, 0.16)	<0.001
IUCN Criteria for Threatened Status ^d			
population size reduction by direct observation (A1, A2, A4(a))	2.601	(1.62, 4.21)	<0.001
decline in area of occupancy or habitat quality (A1–A4(c))	1.840	(1.02, 3.31)	0.042
population size reduction based on levels of exploitation (A1-A4(d))	2.28	(1.36, 3.83)	0.002
small extent of occurrence (B1)	0.192	(0.07, 0.54)	0.002
Taxonomic Order ^e			
Primates 1	1.363	(1.13, 1.64)	0.001
Chiroptera	2.112	(1.80, 2.47)	<0.001
Diprotodontia	0.274	(0.12, 0.61)	0.001
Eulipotyphla	0.192	(0.10, 0.36)	<0.001
Domesticated Species	8.051	(5.89, 11.01)	<0.001

Model predicting the number of zoonotic viruses in a species

Most **common wildlife species**, especially that are increasing in numbers, have shared more viruses with people

Informing Surveillance for Virus Spillover


Global shifts in mammalian population trends reveal key predictors of virus spillover risk

Christine K. Johnson¹, Peta L. Hitchens², Pranav S. Pandit¹, Julie Rushmore¹, Tierra Smiley Evans¹, Cristin C. W. Young¹ and Megan M. Doyle¹


EpiCenter for Disease Dynamics, One Health Institute, School of Veterinary Medicine, University of California, Davis, CA 95616, USA

- Species in global decline because of habitat loss and exploitation shared more viruses with people
- Declines in habitat for wild due to deforestation, development, and conversion to cropland increase disease distribution and animal-human interactions
- Exploitation of wildlife through and the live wild animal trade - the perfect epidemiologic setting for spillover

Fault Lines for Zoonotic Spillover

High-Risk Interfaces with direct and indirect contact with wildlife

Bunyaviridae, Flaviviridae, Togaviridae, Arenaviridae, Rhabdoviridae, Poxviridae, Filoviridae, Paramyxoviridae, Retroviridae, Orthomyxoviridae, Picornaviridae, Reoviridae, Bornaviridae, Coronaviridae, Hepevirida, Herpesviridae

One Health Surveillance Strategy for viruses with pandemic potential (disease x)

Improved detection capabilities,

linking healthcare access with laboratory innovations

Acute febrile surveillance at health care facilities

Improved diagnostics for early detection of threats

One Health Surveillance Strategy for viruses with pandemic potential (disease x)

Strengthened capacity for One Health in practice

Longitudinal cohort studies in high-risk communities, and livelihoods to detect rare and emerging threats

Concurrent surveillance in people, wildlife, and vectors

People in contact with animals

> Wildlife impacted by landscape change

Longitudinal cohort studies in high-risk animals to detect rare and emerging threats

Surveillance on the frontiers of disease emergence

USAID PREDICT International Disease Detection Workforce

One Health Surveillance for viruses with pandemic potential

Community Leadership, Government Engagement, Transformative Change

Readiness in between outbreaks by active ongoing surveillance

An investment in our future